Assessing intracortical myelin in the living human brain using myelinated cortical thickness
نویسندگان
چکیده
Alterations in the myelination of the cerebral cortex may underlie abnormal cortical function in a variety of brain diseases. Here, we describe a technique for investigating changes in intracortical myelin in clinical populations on the basis of cortical thickness measurements with magnetic resonance imaging (MRI) at 3 Tesla. For this, we separately compute the thickness of the shallower, lightly myelinated portion of the cortex and its deeper, heavily myelinated portion (referred to herein as unmyelinated and myelinated cortex, respectively). Our expectation is that the thickness of the myelinated cortex will be a specific biomarker for disruptions in myeloarchitecture. We show representative atlases of total cortical thickness, T, unmyelinated cortical thickness, G, and myelinated cortical thickness, M, for a healthy group of 20 female subjects. We further demonstrate myelinated cortical thickness measurements in a preliminary clinical study of 10 bipolar disorder type-I subjects and 10 healthy controls, and report significant decreases in the middle frontal gyrus in T, G, and M in the disorder, with the largest percentage change occurring in M. This study highlights the potential of myelinated cortical thickness measurements for investigating intracortical myelin involvement in brain disease at clinically relevant field strengths and resolutions.
منابع مشابه
Trends and properties of human cerebral cortex: Correlations with cortical myelin content
"In vivo Brodmann mapping" or non-invasive cortical parcellation using MRI, especially by measuring cortical myelination, has recently become a popular research topic, though myeloarchitectonic cortical parcellation in humans previously languished in favor of cytoarchitecture. We review recent in vivo myelin mapping studies and discuss some of the different methods for estimating myelin content...
متن کاملPatterns of myeloarchitecture in lower limb amputees: an MRI study
Functional studies of cortical plasticity in humans suggest that the motor cortex reorganizes when the descending motor output pathway is disrupted as a result of limb amputation. The question thus arises if the underlying anatomical organization of the motor cortex is also altered in limb amputation. Owing to challenges involved in imaging the thin cerebral cortex in vivo, there is limited dat...
متن کاملIntracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging.
Cerebral myelin maturation and aging-related degradation constitute fundamental features of human brain integrity and functioning. Although mostly studied in the white matter, the cerebral cortex contains significant amounts of myelinated axons. However, how intracortical myelin content evolves during development, decays in aging, and links with cognition remain poorly understood. Several studi...
متن کاملAssessing the Changes of Cortical Thickness in Alzheimer Disease With MRI Using Freesurfer Software
Introduction: In this study, we intend to determine the correlation between the thickness of the cerebral cortex and the severity of the cognitive disorder in Alzheimer disease (AD). Methods: A total of 20 (14 women and 6 men) patients diagnosed with AD with a Mean age of 72.95 years, and 10 (7 women and 3 men) cognitively normal (CN) subjects with a Mean age of 70.50 years were included in th...
متن کاملIn vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice.
To study the effects and mechanisms of insulin-like growth factor I (IGF-I) on brain myelination in vivo, the morphology of myelinated axons and the expression of myelin specific protein genes have been examined in transgenic (Tg) mice that overexpress IGF-I and that those ectopically express IGF binding protein-1 (IGFBP-1), a protein that inhibits IGF-I actions when present in molar excess. Ou...
متن کامل